A multivariate Powell-Sabin interpolant
نویسندگان
چکیده
We consider the problem of constructing a C1 piecewise quadratic interpolant, Q, to positional and gradient data defined at the vertices of a tessellation of n-simplices in IR. The key to the interpolation scheme is to appropriately subdivide each simplex to ensure that certain necessary geometric constraints are satisfied by the subdivision points. We establish these constraints using the Bernstein–Bézier form for polynomials defined over simplices, and show how they can be satisfied. When constructed, the interpolant Q has full approximation power.
منابع مشابه
Triangular Bernstein-Bkzier patches
4. Hermite Interpolants . . , . . . . . . . . . . . . . 104 4.1. The Co nine parameter interpolant ...... 104 4.2. C’ quintic interpolants .............. 104 4.3. The general case ................... 106 5. Split Triangle Interpolants . . . . . . . . . 107 5.1. The C’ Clough-Tocher interpolant . . _ . . 108 5.2. Limitations of the Clough-Tocher split . 110 5.3. The C’ Powell-Sabin interpolants ...
متن کاملA Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element
It is observed that the Powell-Sabin 12-split triangle is re nable since the same split of the 4 similar subtriangles of a triangle contains the lines of split of the original triangle. This property of the split is the key to the existence of a subdivision scheme, for the evaluation of the C quadratic spline on the split which interpolates function and gradient values at the 3 vertices of the ...
متن کاملA Hermite Subdivision Scheme for PS - 12 3 Initialization 1 . subdivision step
It is observed that the Powell-Sabin 12-split triangle is reen-able since the same split of the 4 similar subtriangles of a triangle contains the lines of split of the original triangle. This property of the split is the key to the existence of a subdivision scheme, for the evaluation of the C 1 quadratic spline on the split which interpolates function and gradient values at the 3 vertices of t...
متن کاملA geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization
We derive a geometric criterion for the convexity of Powell-Sabin interpolants and present a multivariate generalization.
متن کاملMultivariate normalized Powell-Sabin B-splines and quasi-interpolants
We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008